The binary system has a base number of two (2). In every day life, we use the decimal system which has a base number of ten (10).

To convert a decimal number to binary, first subtract the largest possible power of two, and keep subtracting the next largest possible power from the remainder, marking 1 s in each column where this is possible and 0 s where it is not.

An easy way to look at a binary number is to use the following table: (We will use the binary number 192 for this example)

- Start on the right side and go left as far as you have bits.

2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
128	64	32	16	8	4	2	1

- Then take your decimal number (192) and, starting on the left, go through and subtract the number from your decimal number. If it can be subtracted, then place a 1 in that place, and if it cannot, place a 0. Basically, you ask yourself can this number be subtracted from my number? 'Yes' becomes 1 , and 'no' becomes 0 .

2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
128	64	32	16	8	4	2	1
192	64	0	0	0	0	0	0
1	1	0	0	0	0	0	0

- Therefore $192=11000000$

Now, let's try another number ...
$154=10011010$

2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
128	64	32	16	8	4	2	1
154	26	26	26	10	2	2	0
1	0	0	1	1	0	1	0

And another number ...
$78=01001110$

2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
128	64	32	16	8	4	2	1
78	78	14	14	14	6	2	0
0	1	0	0	1	1	1	0

* When you have a number that starts with a 0 , you can leave it off because you go only as far left as you have bits.

To convert a binary number to a decimal, it follows much of the same format. You take your binary number and place it into the same type of table. Only you add the numbers that the space fits.
$\mathbf{1 1 0 0 1 0 0 0 = \mathbf { 2 1 6 }}$

2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
128	64	32	16	8	4	2	1
1	1	0	0	1	0	0	0
128	64	0	16	8	0	0	0

$128+64+16+8=216$
$10100111=167$

2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
128	64	32	16	8	4	2	1
1	0	1	0	0	1	1	1
128	0	32	0	0	4	2	1

$128+32+4+2=167$
$11010=26$

2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
128	64	32	16	8	4	2	1
			1	1	0	1	0
0	0	0	16	8	0	2	0

$16+8+2=26$

* Remember that you always start from right to left when placing the numbers in the table. 11010 is the same as 00011010 .

